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Weak waves in relaxing flows

by
**

Peter P. Wegener, Boa-Teh Chu and W. A. Klikoff, Jr.

rheoretical and experimental investigations are described

of the linearized wave equation of supersonic flow with a single

relaxation process. Firing range experiments using a known model gas

mixture with a single relaxation process are discussed. Qualitatively,

it is shown that weak conical and spherical waves decay as predicted by

theory. In addition, this decay can be determined quantitatively for

conical disturbances; and, satisfactory agreement with theory is found.

For application to unknown relaxation processes, it is suggested that

observation of the damping of weak waves provides an additional tool

for the study of fast rate processes.
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1. Introduction

In treating relaxing flows with one nonequilibrium mode a

rate equation for a progress variable, q, needs to be considered.

With p, p, T denoting the pressure, density, and a relaxation time

of the medium, we have

Pa = L(p,p,q) (1)
Dt T

where L is a function of the thermodynamic state of the medium and

L[p,p,q(p,p)] 0 0, with q being the progress variable at equilibrium.

For small-disturbances, equation (1) may be linearized and written as

Dq= a q_' (1')
Dt v(q-q)Dt

aL
with a rate constant defined by v = - /T. The equation for the3q

propagation of small-disturbances linearized about the state of

thermodynamic equilibrium and incorporating a rate equation like

equation (1') is well-known (see Moore 1958 or Clarke 1964.) In

terms of the velocity perturbation potential, 0, we have

o (l- *tt- V20 ) V2 (l t- V20) = 0, (2)

where the Laplacian assumes the form,

V2 1 2 n-l a (3)n-I ar r --
r

with n - 1, 2, and 3 for plane, cylindrical, and spherical waves,

respectively. In equation (2), af and ae denote the frozen and

equilibrium sound speeds evaluated at the undisturbed state,

respectively. It is convenient to
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characterize the medium by an equation of state giving the enthalpy

h as a function of p, p, and q. It follows that (Broer, 1958)

a h

f = )s,q -3h _ '

ap p

and

ah + 3h_

a2 3-3 I (5)e -p s~ h + D__h3h l _ 1"
ap aq ap p

Furthermore it can be shown from considerations of thermodynamic

stability that af > a e . The relaxation time of the single nonequili-

brium process is, by definition,

ah

T p 9(6)0 DL 3h + ah 3..
aq ap aq ap

where T is related to the specific rate process under discussion. The

limiting sound speeds of equations (4) and (5) also arise in Einstein's

treatment of reacting gases (1920) as the limits of the acoustic

velocity for the high and low frequencies. The characteristics of

equation (2) are

dr 0, (7)
dt f

as previously shown by Broer (1950); Brinkley & Richardson (1953); and,

Wood & Kirkwood (1957), for variants of the wave equation under dis-

cussion. For steady disturbances in a medium moving with a velocity, U,
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we replace a/3t in equation (2) by Ua/ax and find (Vincenti, 1959;

Moore & Gibson, 1960),

UD 
2 32 a2  2 32  a2

UTo[(Mf-1)x- " - + a--]O¢+[(M2-1) a a + = 0, (8)

where the frozen and equilibrium Mach numbers are defined by Mf = U/af

and Me U/ae , respectively. Comparing equations (2) and (8), the

following identifications are evident: t corresponds to x, af to

1VAi1, ae*tO 1//e-l, and T to UT . Once * is known, the velocity,

pressure, and density fields can be calculated from

= VG , p, = - p0 ' and ap' - (9)

wher, is p a
where a is to be replaced by ULx in steady flow. Finally, if we set

To 0 0, or -, in equations (2) and (8), we recover the wave equation

of acoustics and the Prandtl-Glauert equation for equilibrium or

frozen flow, respectively.

Inspection of these third order equations using Whitham's

analysis (1959) reveals that weak disturbances propagate initially

with the frozen sound speed along the characteristic direction given

by equation (7). Furthermore, these weak waves are expected to decay

with distance from the origin both by the usual geometric wave decay

found for cylindrical and spherical waves; and, also, by an exponential

decay occasioned by the relaxation process for all three geometries of

the flow field. Moore & Gibson (1960) indicated the form of the decay

for plane waves in relaxing steady flow; Wegener & Cole (1962) provided

a complete solution for the system to be discussed later and showed
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experimentally that in steady, supersonic flow of a reacting gas

mixture, a weak disturbance indeed propagates along the characteristic

direction given by the frozen sound speed. The role of the equilibrium

sound speed, ae, and its relation to the wave form at large time (or

distance) has been discussed by Chu (1958).

These equations are valid for flows in which all modes but

one are in thermodynamic equilibrium, in the sense advanced by Wood &

Kirkwood (1957). The rate equation may, therefore, be applied to any

nonequilibrium process simply by choosing the progress variable, q,

appropriately. Vibrational relaxation, chemical reactions, dissociation,

ionization, or electronic excitation--all these rate processes--if

present as a single nonequilibrium mode, would fall under the above

description.

In this work, equation (2) will first be integrated to yield

more general expressions for wave decay. Furthermore, these findings

will be tested experimentally, by using a model gas, the well-understood

reacting gas mixture,

kD

N2 + N204 rm= N2 + 2N0 2, (10)
kR

with which other aspects of nonequilibrium flows have previously been

explored (Wegener 1961). As usual, kD and kR denote the specific

reaction rates for the indicated dissociation and recombination

processes, respectively. It will be demonstrated that the predicted
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wave decay is experimentally observable. Also,. a quantitative

determination of wave decay of conical waves will be shown which

provides another technique to find relaxation times of fast non-

equilibrium processes (Wegener 1964).

2. Analysis of the decay of weak waves

An analytical study of the decay of cylindrical and spherical

wave fronts can be carried out in much the same way as that for plane

waves (Wegener & Cole 1962). Let us first introduce the characteristic

coordinates:

--- n t r (11)
= t - -

af af

so that

a _- a + a a = - 1 a ) .( 2
at a5 an ' af (12)

From equation (9), we conclude:

1
p' = P- o 0 + , 1 =  a

when 0/= 3/, oi = a¢/an and u' denotes the radial velocity. Now
r

the basic equations (2) and (3) can be rewritten in the form

17 1 a2  a2  n-l a)+ (17 1 " O1

--t (a t ar='2  r ar~ e- T a.,..- =at14

0 f Toae afa

and substituting equation (12) into equation (14), we have

L 4 a2 n-l 1a9 8 1 1 1 a a 2

o f o e )
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Equation (15), like equation (2), possesses a 3-fold continuum of

characteristics. A wave front is defined here as that characteristic

across which * is continuous, while the normal derivatives of and,

therefore, all physical variables, undergo discontinuous changes.

Hence, if = is a wave front, 2 is discontinuous across the wave

front, while , a/Dn, 920/n 2 are all continuous. Keeping these

remarks in mind, we can integrate equation (15) with respect to C from

= &0- C to + = , and then let c 0 0. All terms that are con-

tinuous at E = will drop out as e - 0, leaving only the following

terms:

+ f _ - 0, (16)

where the square bracket identifies a jump of whatever quantity

appears in the bracket, across the characteristic. Now

%] = 0 ,L-0 I = 0. (17)

It follows from equations (13), (16), and (17) that

n -1a 2

alp,I + 2 + 4 -)lip'] = 0. (18)

This equation can be readily integrated to give

n-1

[p'] = const r 2 exp(-Ar) (19)

where

a
2

A f e - (20)2a-fTo =a

f
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Similar expressions hold for u' and P'.r

For a medium with a number of nonequilibrium processes,

the wave front will still decay as

n-1

r exp(-r/X) (21)

except that the relaxation length, A, is given by a more complex

formula.

Let us next consider the decay of a stationary wave front

in steady supersonic flow. Since the governing equation (8) has

exactly the same structure as equation (2), the decay law can be

written down immediately. First, we introduce the quantity

A' = 1/ l L\I eJ - 11~ M2  M)

0U f '/~V e o f

and redefine n and r for stationary wave fronts as follows:

1. Two-dimensional steady supersonic flow: n = 1 and r = y

--plane stationary wave fronts.

2. Axially symmetric steady supersonic flow: n = 2 and

r = vyZzL- -conical wave fronts.

The discontinuous changes in density and other flow variables will

then follow the decay law

n-1

[p'] = const r 2 exp(-A'r), (23)

etc.
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For n * 1, we reproduce the result of Wegener and Cole (1958).

The ratio of A' and A is

A' 1
0 - l/Mz) 2 (24)

It is always greater than 1 and approaches 1 monotonically as Mf -,

as shown in figure 1. It is seen that above Mach numbers of about

three, A I A' for all practical purposes.

3. Properties of the model gas mixture

The thermodynamic properties of the gas mixture of equation

(10) as reviewed by Gray & Yoffe (1955) are well-known at equilibrium.

From the results of shock tube experiments (Carrington & Davidson 1953)

and nonequilibrium nozzle flow experiments (Wegener 1958), it is

reasonable to assume a reaction mechanism given by

[ (NT01.)]T = kR(N02) 2 (N2) - kD(N20)(N2). (25)

For reactant mole fractions up to nR 0.05, the recombination rate

constant of equation (25), kR = 3 x 1014cm 6/(mole 2sec), was found

around room temperature. Equation (25) may, in addition, be cast in

the form of the rate law (1), or (1'). Working with mass fractions,

W. = mi/m, we can identify the progress variable by q -N0. This

designation determines the state uniquely, because the nitrogen mass

fraction remains unchanged and the reactant mass fractions are known

initially at equilibrium. With the equilibrium constant in terms of

2ressure
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T*
K p(T) = p *e T (26)

where p* - 1.538 x 109 atmospheres and T* a 6882 OK (Strehlow, 1964)

and recalling that Kp = (kD/kR)RT, we find for the L-function of

equation (1)

L(p,pq) = (1 - wN -q)2 - q(-q) (27)

where

f "N2 04 + 2(1 - (28)

with pi, the molecular weight. Furthermore,

N - N- 2 
(29)2 kRPZN2

For fixed we see that 9 = constant; and, if we set L 0, we

recover the law of mass action. T in equation (2) may be computed

immediately from equations (6) and (29).

The partial derivatives entering equations (4) to (6) have

previously been given for this system by Wegener $ Cole (1962) as

their equations (31) to (36). Typical values of these parameters at

equilibrium and atmospheric pressure and temperature as obtained on a

digital computer are shown in figure 2. Values are given as a function

of reactant mole fraction, nR; and, the derivatives have been made dimen-

sionless by appropriate variables chosen for pure nitrogen at NTP. Also

given is the square of the ratio of the limiting sound speeds and the

degree of dissociation at equilibrium, a, of the reactants only. The
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sound speeds are close to each other; and, it is interesting to note

that their difference reaches a maximum of about 8% of ae at n R a 0.14.

4. Experimental techniques

Experiments on propagation of weak waves were carried out

in a small firing range filled with the model gas mixture of equation

(10). Standard projectiles of about 0.22-inch diameter were fired

from a commercial Winchester 220 Swift rifle at about 1220 m/sec, or

M f 3.6. The bullets traversed a test box with two circular optical

glass windows of 13-inch diameter, spaced about 1.5 inches apart.

With bullet entry and exit holes having been sealed with plastic dia-

phragms, the cleaned box was pumped out and then filled with the

carefully prepared dry gas mixture at known temperature, total pressure

and reactant partial pressure. A fume hood was placed above the test

box to exhaust the reactants after the shot had pierced the seals.

With parallel light incident at a right angle to the bullet

path, a shadowgraph of the projectile was taken in the box with a

1/2-microsecond exposure of a 10 KV spark unit. An 8xl0-inch film

(or plate) holder was located adjacent to one window. To insure

dimensional accuracy comparisons of a grid of known dimensions, photo-

graphed simultaneously, were made with pictures taken with glass plates.

A second similar spark shadowgraph station was located in free air

about 75 cm downstream to record a second photograph. Fiducial

marks of known distance appeared in both photographs and the elapsed

time between the release of the two sparks was measured. Since the
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speed reduction of the projectile between the two stations was found

to be negligible (cD = 0.37 with a bullet mass of 48 grams,) the

speed of the projectile could be determined directly to better than

1%.

The bow shock wave of the bullet was used as a constant

speed disturbance generator, as seen in the upper shadowgraph of

figure 3 taken in non-reacting air. 1/8-inch thick metal strips

divided the box on both sides of the flight path. (The black strips

visible in the photographs are seals.) In each divider-strip were

drilled, on the centerlines, a line of small holes parallel to the

flight path. The holes in the upper strip were spaced 1 inch apart;

the lower divider holes 0.04-inch apart between centers.

With the strong bow wave sweeping across both sets of

holes, the increased pressure behind the shock produces a succession

of gas puffs through the holes. These, in turn, generate individual,

weak spherical waves on the far side of the divider. Vortices may

also be noted in the photographs. These weak waves are the object of

our experiments. The classical Mach cone is formed by the waves

running together on the side with the many holes. Succeeding the

initial disturbance, there follows a complicated pressure-time history

of the flow field of the bullet, to which the holes in the divider

plates are being exposed. Since, clearly, the initial disturbance,

made visible by changes of index of refraction of the gas, cannot be

of vanishing strength, and considering the non-uniform succeeding flow,
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it is expected that the waves produced have nonlinear components.

However, as will be demonstrated, the technique described yielded

wave patterns both in non-reacting air and also in the reacting

model gas mixture, which were suitable for comparison with the

theoretical results from linear theory.

5. Results and discussion

The properties of equation (23) were studied by determining

the decay of weak conical and spherical waves from shadowgraphs, such

as those shown in figures 3 and 4. These photographs were taken at

thermodynamic states close to those shown in figure 2. However, the

reactant mole fractions selected for the experiments did not exceed

nR= 0.15, sifce at higher concentrations the mechanism and rate of

the reaction become increasingly doubtful, and owing to the reddish-

brown color of nitrogen dioxide, the gas mixture becomes practically

opaque. Typical experimental conditions are listed in table I, and

the results in the figures are identified by numbers corresponding to

this table. The temperature and total pressure were, in each instance,

close to the average values indicated; however, properties were computed

separately for the exact conditions of each experiment. The calcula-

tions included theoretical predictions of the relaxation time, and the

term A' of equation (22), both based on kR = 3 x 1014Cc6 /(mole 2sec).

The two groups of experiments listed in table I differ in the choice

of the hole size in the divider strips used for the production of the

disturbances. For greater clarity all photographs shown here were
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taken with an 1/8-inch hole yielding the stronger initial disturbances.

Since shadowgraphs may be interpreted in terms of change of

index of refraction occasioned by a density change in the medium under

observation, we will characterize the strength of the wave front by a

dimensionless jump in density defined by Ap/p ° = (P-Po)/p where p

is the density immediately behind the disturbance, and p the density

in the undisturbed medium. Such density jumps may be introduced in

equation (23). However, before proceeding, we note that for r = 0,

i.e., at the origin of the disturbance, we have a singularity for

n = 2, 3. This is to be expected from previous encounters with this

problem in slender body theory. Choosing some distance, r, downstream

from the origin of the disturbance, and assuming that the linearized

equations are applicable, if r > UT0 , where UT is a relaxation length,

we may now rewrite equation (23) to obtain

n-1
A- 2 -A'(r-r
p (rL) e , (30)

(Ap)l r1

where A' takes the form appropriate to the problem under study and the

left-hand side is the ratio of two density jumps. The decay in wave

strength as a function of distance expected from equation (30) for

all three geometries and for a typical experimental situation with

A = A' = 1 cm"1 (or T o = 2.5 psec) is shown in figure S.

Results of disturbance decay or decrease of Ap with r will

next be investigated by two different techniques to be applied to our
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experiments. At first, we assume that equation (30) is directly

applicable by neglecting the effects of nonlinearity discussed in the

last section. The conical waves in the steady flow depicted in figures

3 and 4 correspond to unsteady cylindrical waves with n = 2. Inspection

of the lower photograph in figure 3 and the shadowgraphs of conical dis-

turbances shown in figure 4 clearly shows that for increasing reactant

mole fraction, i.e., decreasing relaxation time, the conical disturbance

disappears at decreasingly shorter distances from the origin. This

qualitative observation was checked by increasing the film sensitivity

with increasing reactant mole fraction to obtain a uniformly illuminated

background for the undisturbed reacting mixture. The upper photograph

in figure 3 reveals that in non-reacting air, no decay of the conical

wave is readily observable from the apparent strength of the density

jump within the scale of this experiment. In an additional series of

experiments in non-reacting air this persistence of the conical dis-

turbances was still noted with gray filters interspersed in the light

bea and corresponding to the absorption of the reactants.

Secondly, the photographs with relaxation reveal that, as

predicted by equation (30), spherical disturbances (n = 3) decay more

rapidly than the conical ones (n = 2), all other conditions being equal.

In fact, in the air shot of figure 3, we find spherical and conical dis-

turbances visible in the entire flow field while in the lower picture of

the relaxing mixture, the spherical disturbances have disappeared at

distances r where the conical one is still visible. In addition to
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these qualitative observations, the conical wave decay may be deter-

mined roughly by a crude visual estimate of the disappearance of the

disturbance in equally-treated positives of the shadowgraphs. We may

rearrange equation (30) to have

A'r1  1 n [£('P) 1 - .tn-l.(1
A~ p 2 nI (1

It is possible to estimate from the photograph a value of the distance

along the conical disturbance from the origin where the conical distur-

bance disappears to the eye. Calling this distance s, a corresponding

value of the coordinate, r, is given by r = sMf. Considering the

sensitivity to light of the photographic material one may rather arbi-

trarily assign values of (Ap)I/Ap = 10 and 50 to the location where the

trace disappears on the positive with (Ap)l taken to be at r = 1 cm.

Getting the value of r at extinction of the trace we may then compute

two corresponding values of A from equation (31) as shown on figure 6

for the experiments listed in table 1 and a number of additional un-

listed experiments. Predicted relaxation time rather than measured mole

fraction is shown on the abscissa. The results scatter about the pre-

dicted values of A and calculations reveal that the estimated vanishing

point of the disturbance on the positives occurs somewhere at

(Ap)I/Ap= 30. Since A is lineally related to relaxation time, or rate

constant, these may be computed directly from such results. This

simple method of estimating relaxation time may prove useful in appli-

cation to unknown systems in order to provide an initial hint of the
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order of magnitude of rate of processes. Unfortunately, similar

attempts to measure the wave strength of the spherical waves quan-

titatively have failed.

Next, we turn to a more detailed evaluation of the decay

of the conical waves. By measuring the angle of the conical wave as

a function of r, the results shown in figure 7 are found. It is

noted that the wave angle decreases slightly with r in air and the

reacting mixture. This bending or wave decay has two causes: for one,

we expect a geometrical wave decay even for non-reacting air. We see

that the exponential relaxation term in equation (30) for frozen flow

with T = - and A = 0 yields one. Such behavior of wave decay of the

conical wave with n = 2 is in contrast to that of the non-decaying

shock wave of a slender cone. The reason for this difference is found

because the disturbance generation by the bow shock of the bullet con-

sists of a rapid succession of (hopefully) rather sharply defined,

finite puffs of air coming from the holes in the divider, in direct

analogy to the single unsteady cylindrical wave pulse. Non-linearities,

in addition, arise from the initial shock and succeeding pressure field,

as seen in figure 3 and discussed previously. (It appears that viscous

damping is practically negligible at distances r of our experiments.)

In order to "calibrate" all non-linear effects lumped together we may

first write equation (23) in terms of the density jump by

ln(- P- r112) = - A'r + constant (32)
P0O
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to separate geometrical and relaxation decay. For frozen flow with

A'= 0, the right-hand side will give a constant whose value depends

on the initial wave strength. By assuming the weak shock to be

locally two-dimensional, the density jump may generally be computed

from the angle measurements by

PO-P (y+l) M2 sin 2 0
. . . .0 , (33)

PO Po (y-l) M 2 sin2 0 + 2f

where 0 is the shock angle. In our process, the reacting flow remains

frozen across the disturbance; y, the ratio of the specific heats,

applies to the mixture, and Mf = M for air. Experimental results on

wave strength as a function of r are given in figure 8, plotted as

suggested by equation (32). At first, we observe from figures 7 and 8

that the initial wave strengths of the experiments of group 2 with the

larger holes are indeed higher, as expected. Furthermore, we see that

the decaying waves approach the frozen Mach angle as computed indepen-

dently at large r. In fact, the frozen Mach angle is practically

attained where the wave ceases to be visible. For the relaxing flow

this represents additional experimental evidence that weak disturbances

indeed propagate at the frozen sound speed. On the other hand, we see

that for non-reacting air with A'= 0, we do not observe 
tn[(Ap/p)rl/

constant, as expected from equation (32). We find empirically a decay

as approximated by the dashed lines in the semilog graphs of figure 8;

and, we ascribe this decay to all the nonlinear effects lumped together.

Since the experiments with the reacting gas mixture were carred out at
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practically the same Mach numbers and Reynolds numbers, we propose to

assume that the nonlinear flow-field effects found quantitatively for

air are also equal in magnitude with the relaxation process being present.

In this manner a decay calibration for non-linearity as a function of r

becomes available from the air pictures. After subtracting this for-

tunately small correction, the chemical damping factor, A', may be

directly found from the slope of the straight lines of the other experi-

ments in figure 8. This final result is shown in figure 9, where A'has

again been plotted versus relaxation time, and the agreement with the

predicted values is satisfactory. The agreement is found for both hole

sizes and therefore initially different wave strengths. This fact

appears to imply that the correction procedure used is valid.

In conclusion it is seen that relaxation times may be found by

quantitative observation of the decay of weak conical waves in a re-

laxing flow field. The linearized equations can be applied to experi-

ments with a small correction accounting for the initial finite wave

strength. It is suggested that these findings may be applied to the

study of unknown relaxation processes.
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FIGURE 1: Ratio of the chemical damping terms for steady

and unsteady flow as a function of frozen Mach number.
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FIGURE 3: Firing range shadowgraphs - Upper figure, air, experiment

155; lower figure, reacting gas mixture, experiment 156

(see table I )
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FIGURE 4: Shadowgraphs of weak conical disturbances for the

indicated reactant concentrations at a mean Mf- 3.7

I at NTP.
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FIGURE 5: Theoretical decay of weak plane, conical and spherical

waves for A =A' =1 cm- (.t 2.5 )Jsec) and r, 1 cma.
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FIGURE 6: Comparison of predicted and measured chemical
damping terms, A', from estilmaes of visual
disappearance of conical wave decay.
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FIGURE 7: Angle of weak conical waves as found by independent
observers indicated by a and o.
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FIGURE 8: Conical wave strength as a function of r computed from

the wave angle.
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FIGURE 9: Comparison of predicted and measured chemical damping

term A' from slope measurements of conical wave decay.


